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ABSTRACT

Although deep convolutional neural networks (CNNs) have
significantly boosted the performance of many computer vi-
sion tasks, their complexities (the size or the number of
parameters) are also dramatically increased even with slight
performance improvement. However, the larger network leads
to more computation requirements, which are unfavorable
to resource-constrained scenarios, such as the widely used
embedded systems. In this paper, we tentatively explore the
essential effect of CNN parameter layout, i.e., the allocation
of parameters in the convolution layers, on the discriminative
capability of CNN. Instead of enlarging the breadth or depth
of networks, we attempt to improve the discriminative ability
of CNN by changing its parameter layout under strict size
constraint. Toward this end, a novel energy function is pro-
posed to represent the CNN parameter layout, which makes
it possible to model the relationship between the allocation of
parameters in the convolution layers and the discriminative
ability of CNN. According to extensive experimental results
with plain CNN models and Residual Nets, we find that the
higher the energy of a specific CNN parameter layout is, the
better its discriminative ability is. Following this finding, we
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propose a novel approach to learn the better parameter lay-
out. Experimental results on two public image classification
datasets show that the CNN models with the learned param-
eter layouts achieve the better image classification results
under strict size constraint.
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1 INTRODUCTION

Starting from the amazing debut on 2012 ImageNet com-
petition [20], deep CNNs have been developed greatly in
the last few years, especially on image representation learn-
ing. Totally different from the traditional hand-craft fea-
tures [18, 26, 28, 38–40], the discriminative CNN features
are learned automatically by the deep convolutional neural
networks. Employing CNNs, lots of computer vision tasks,
such as image retrieval [1, 24], image labeling [41], seman-
tic segmentation [25, 42] and object detection [30, 31], have
achieved unprecedented performance.

Generally speaking, most researches on deep CNNs [12,
20, 22, 23, 32, 35] have paid much attention to boosting
discriminative capability of network architectures, but they
didn’t fully take into account the constrained conditions in
the practical scenarios, such as the limitations in compu-
tational resources, memory usage, and real-time capability.
For example, the outstanding AlexNet [20] was significantly
deeper than the classic LeNet [22], which employed a new
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activating function (i.e.,ReLu) [27] to avoid the problem
of vanishing gradients in deep CNNs. Although AlexNet
outperforms the traditional shallow networks remarkably, it
has to learn a great deal of parameters. The number to be
learned is up to 60 million. Furthermore, Simonyan et al. [32]
proposed the VGG Net, in which there were 19 layers. In
spite of employing smaller convolution filters (i.e.,3 × 3 size),
VGG Net owned more parameters than AlexNet. To control
the computational cost, Szegedy et al. [35] proposed a more
powerful network, called GoogLeNet, which was carefully
designed by increasing the depth and breadth of the network.
To address the convergence problem in the extremely deep
CNN, He et al. [12] reformulated the layers as learning resid-
ual functions with reference to the layer inputs, which led
to a more powerful but extremely deep convolutional neural
network. In brief, most of existing CNN models with the
same network structure attempt to boost the performance
by enlarging the breadth or depth of the networks. However,
the larger network gives rise to more computational cost
and higher memory usage, which are impracticable in many
resource-constrained scenarios like widely used embedded
systems.

To deal with this issue, many recent researches have focused
on developing economic and efficient CNNs. Canziani et al. [3]
presented a comprehensive analysis of important metrics
among those outstanding networks mentioned above, such
as parameters, operations count, and the inference time.
Moreover, some approaches [9, 10, 15, 16, 29] about the topic
of network compression have been reported. For example,
Han et al. [10] proposed deep compression, which can reduce
the memory usage of the existed CNNs by a series of processes
with no loss of accuracy. However, we work in a different
way. In our work, we improve the discriminative ability of
CNN under strict size constraint.

In this paper, we attempt to design CNN models from
a new perspective, i.e., the parameter layout of CNN mod-
els under strict size constraint. The parameter layout of
CNN refers to the allocation of parameters in the convolution
layers. Instead of changing the network scale, we enhance
the discriminative ability of CNN meanwhile controlling the
total amount of parameters in the convolution layers. In
essence, for the CNN models with the same type of network
structure, the number of parameters is directly proportional
to the computational cost and memory usage of the network.
Hence, we aim to improve the discriminative ability of CNN
meanwhile remain its computational cost and memory usage.
Toward this end, we propose an energy function to model
the relationship between the allocation of parameters and
the discriminative ability of CNN. In the energy function,
each feature map in a specific convolution layer is treated
as the indeterminate symbol sent by the information source,
and the energy of CNN parameter layout is the product of
the information entropies of the convolution layers. Accord-
ing to extensive experiments, we find that the higher the
energy of a specific CNN parameter layout is, the better its
discriminative ability is. Following this finding, we propose a
novel approach to learn the better CNN parameter layouts
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Figure 1: The convolution operation in the convo-
lution layers. Conv represents the convolution layer.
The convolutional kernels with different colors indi-
cate that the number of feature maps in the previous
convolution layer (Convn−1) will directly influence
the number of parameters of the current convolution
layer (Convn).

under strict parameters constraint. Experimental results
show that the learned CNN parameter layouts maintain the
proportional trend and achieve the best image classification
results, compared with other parameter layouts under strict
size constraint.

The main contributions of this work are summarized as
follows:

(1) We discover the relationship between the allocation
of parameters in the convolution layers and the dis-
criminative ability of CNN. It provides a new per-
spective for understanding the inner work mechanism
of CNN.

(2) We propose an energy function to measure the dis-
criminative ability of CNN when the total amount of
parameters in the convolution layers remains invari-
ant. Feature maps in the corresponding convolution
layer can be regraded as the possible outcomes, and
they are in a state of total uncertainty as the con-
volution kernels are randomly initialized. Hence the
information entropy of each convolution layer is the
biggest as the probabilities of feature maps are same.
The energy function is a product of the information
entropies of the convolution layers. To the best of our
knowledge, it is the first time that an energy func-
tion is proposed to model the relationship between
the allocation of parameters and the discriminative
ability of CNN.

(3) The energy function can be used to change the ex-
isted CNNs or design a new CNN, which will be
beneficial to many computer vision problems.
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2 RELATED WORK

Convolutional neural networks have been greatly developed,
and lots of outstanding networks are proposed to deal with
the specific problems of computer vision. Since this paper
mainly focuses on the CNN parameter layout, we only in-
troduce some representative works from three aspects, the
convolution kernel, the network architecture and the network
compression.

2.1 Convolutional Kernel

Since the convolution operation is the critical step in CNN,
different sizes of convolution kernels will directly affect the
performance of CNN. Lots of works [32, 44] had pointed
out that the smaller convolution kernels would benefit the
performance of CNN. Karen et al. [32] took advantage of this
property. They set all convolution kernels as very small (3×3)
convolution kernels. In fact, a stack of two convolution layers
with (3 × 3) convolution kernels has a more effective field
than that of one convolution layer with (5 × 5) convolution
kernels. More importantly, it has much more nonlinearity
and fewer parameters. Residual Net [12] followed the rule of
convolution kernels and took advantage of (3×3) convolution
kernels. On the other hand, Szegedy et al. [32] invented
the inception model, which concatenated the feature maps
computed by (1 × 1, 3 × 3, 5 × 5) convolution kernels, to
capture more detailed information.

In addition to the convolution operation at fixed locations
of the feature map, the deformable convolution [5] which
added 2D offsets on the feature map can enhance CNN’s
capacity of modeling geometric transformation.

2.2 Network Architecture

The neural network is not a new research area, which has
been developed for nearly half a century. Cybenko [4] and
Hornik et al. [13] had pointed out that neural networks with
only one hidden layer can describe any bounded continuous
function, while the universal approximation property requires
an exponential number of neurons. Hence, deepening the
neural network is a feasible and promising direction [2, 7, 11].
LeNet [22] was the starting point of the convolutional neural
network, which gained satisfactory performance on the docu-
ment recognition. AlexNet [20] had five convolution layers,
which was deeper than LeNet. Following this way, VGG
Net [32] and GoogLeNet [35] reached 19-layer and 22-layer
respectively. While deeper neural networks were more diffi-
cult to train, Srivastava et al. [34] proposed Highway Network
which allowed the unimpeded information flow across several
layers on information highways. Moreover, He et al. [12]
reformulated the layers as learning residual functions with
reference to the layer inputs and built 152-layer Residual
Net.

Recent works [21, 36, 37, 45] pointed out that a Residual
Net is a mixture of many dependent networks. Andreas et
al. [36] interpreted a Residual Net as a collection of many
paths of differing length, and revealed these paths to show
ensemble-like behavior in the sense which does not strongly

depend on each other. On the other hand, there are also
some works [10, 14, 43] about changing the layout of Residual
Net. Han et al. [10] proposed a pyramidal network structure
in which the number of feature maps is gradually increased.

2.3 Network Compression

Deep CNNs lead to huge computational cost and memory
usage, which are impracticable in many resource-constrained
scenarios like widely used embedded systems. To address
this problem, a straightforward way is the network compres-
sion which aims to develop the economic and efficient CNNs.
Lots of approaches [9, 10, 15, 29] about the topic have been
proposed. Han et al. [10] employed pruning, trained quan-
tization, and Huffman coding to compress neural networks,
and gained the great decrease of the storage requirement.
Recently, Han et al. [9] further designed a hardware accelera-
tor called EIE [9] based on the deep compression. Moreover,
Hubara et al. [15] quantized weights and activations to re-
duce memory size and accesses, and used bit-wise operations
to replace most arithmetic operations. Different from these
methods that compress the existed models, Iandola [16] in-
vented a squeeze convolution layer to construct SqueezeNet
that had fewer parameters but equivalent accuracy compared
with AlexNet.

There are also some other works that aim to improve
the discriminative ability of CNN, such as batch normaliza-
tion [17], dropout [33], adaptive gradient methods [6]. Since
the points of views on improving the discriminative ability
of CNN are different from ours, we do not give more details.

3 THE ENERGY FUNCTION
CONNECTING CNN PARAMETER
LAYOUT AND DISCRIMINATIVE
CAPABILITY

In order to model the relationship between the allocation of
parameters and the discriminative ability of CNN, we design
the energy function inspired by the information entropy.
In this section, we first introduce the convolutional neural
network in brief. Then, we introduce the details of the energy
function. Finally, we transform the energy function into the
objective function and propose a novel approach to learn the
better CNN parameter layouts.

3.1 Convolutional Neural Network

Convolutional neural networks have significantly boosted
the performance of many computer vision tasks. In fact,
since the first convolutional neural network, i.e., LeNet, was
proposed, the basic building components of CNNs have not
changed much. AlexNet also contains the convolution layer,
the pooling layer, and the fully-connected layer, as LeNet does.
Here, we will introduce the convolutional neural network via
introducing AlexNet.

AlexNet contains five convolution layers, three pooling
layers, and two fully-connected layers. Different building
components have different functions on the network. The
convolution layers are the vital components of CNN, which
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extract information from the original inputs. The pooling
layers are mainly used to reduce the network complexity. At
the end of the network, the fully-connected layers are used
to integrate information for classification. It is clear to find
that the parameters in the convolution layers play a key role
in the performance of the network. We take AlexNet as
one example to compute the number of parameters in the
convolution layers. Note that the parameters do not include
the parameters in the fully-connected layers.

To evidently describe AlexNet, we first declare some vari-
ables. The input of AlexNet has n0 channels. The size of the
convolution kernel in the feature map is k × k, as shown in
Fig. 1. The number of convolution kernels in the ith convo-
lution layer is ni. In the following sections, we will use the
form (n1, n2, ..) to represent the network’s parameter layout.
The input should be forwardly propagated in the order of
architecture. The detailed information of the convolution
operation is shown in Fig. 1. We can clearly notice that the
number of feature maps in the previous convolution layer is
identical to the number of convolution kernels in the current
convolution layer. It indicates that the number of convolution
kernels in the previous convolution layer will directly influ-
ence the number of parameters in the current convolution
layer. Hence, the number of parameters in the ith convolution
layer is k × k × ni−1 × ni. Now we compute the number of
parameters of AlexNet by the following equation:

Pall = k × k × n0 × n1 + k × k ×
N∑
i=2

ni−1 × ni

= k2 × (n0 × n1 +

N∑
i=2

ni−1 × ni),

(1)

where Pall is the total amount of parameters in AlexNet, and
N represents the number of convolution layers in AlexNet.

3.2 Definition of the Energy Function

Our aim is to find a function which can model the relationship
between the allocation of parameters in the convolution layers
and the discriminative ability of CNN. Using the function,
we can provide a new perspective for configuring the optimal
CNN parameter layout under strict size constraint.

Inspired by the information theory, we find that the feature
maps of the corresponding convolution layer can be regarded
as the possible outcomes of an information source. According
to this assumption, we can use the information entropy to
measure the energy of the convolution layer. The random
initialization of training CNN makes these outputs in a state
of total uncertainty. Hence, the information entropy of the
convolution layer is the biggest as each feature map has the
same probability. It is formulated as follows:

Ini = −
nij∑
j=1

1

nij
log(

1

nij
) = log(ni), (2)

where nij represents the jth feature map of the ith convolution
layer.
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Figure 2: The architectures of two types of Plain
CNN models in the experiments. One type contains
three convolution layers, and the other contains four
convolution layers.

From Eq. 1 and Fig. 1, we can clearly find out that the
number of feature maps in the previous convolution layer has
the multiplicative effect on the size of convolution kernels
in the current convolution layer. In our energy function,
we do the multiply operation between information entropies
of two adjacent convolution layers. Note that the energy
function holds just when the total amount of parameters
remains invariant. As [10] has pointed out that the network
with the gradually increased number of convolution kernels
in convolution layers has the better discriminative ability,
we further add the constraint. The energy function of a
CNN model with N convolution layers can be formulated as
follows:

IN =

N∏
i=1

Ini , i = 1, .., N

s.t.

N∑
i=1

ni−1 × ni = C, ni < ni+1,

(3)

where C is the constant value that represents the number of
parameters.

In the section of experiments, extensive experiments demon-
strate that the energy of CNN is proportional to the discrimi-
native ability of CNN. It motivates us that the energy function
can be transformed into the objective function with some
constraints. In the next section, we will give more details.

3.3 Learn the Better CNN Parameter
Layout

As we have designed the energy function to model the relation-
ship between the allocation of parameters in the convolution

Session: Fast Forward 4 MM’17, October 23-27, 2017, Mountain View, CA, USA

1000



layers and the discriminative ability of CNN, we can take
advantage of the energy function to learn the better CNN
parameter layout. In the section of experiments, we have
validated that the energy of CNN parameter layout is pro-
portional to the discriminative ability of CNN. It means that
the higher the energy of a specific CNN parameter layout
is, the better its discriminative ability is. Hence, finding the
better CNN parameter layout is transformed into finding
the biggest energy. The objective function is formulated as
follows:

max

N∏
i=1

Ini , i = 1, .., N

s.t.

N∑
i=1

ni−1 × ni = C, ni < ni+1.

(4)

Once solving the objective function, we can find the better
CNN parameter layout. However, when the number of con-
volution layers is increasing, the time consuming of resolving
this objective function is unacceptable. Due to the objective
function is an NP-hard problem, it will be difficult for us
to find the better parameter layout when the CNN is too
deep, especially for the residual network. Here we give one
simplified solution for finding a sub-optimal parameter layout
of the residual network. The size of convolutional kernels in
the regular building block unit of ResNet [12] is the same.
We can simplify the objective function by taking the regular
building block unit as one convolution layer. It means that
we also keep the size of convolution kernels in the regular
building block unit fixed. In this way, the number of “con-
volution layers” in ResNet will sharply decrease. And the
time consuming of resolving the objective function will be
reduced greatly.

4 EXPERIMENTS

In order to validate the energy function, we conduct a series
of experiments with plain CNN models and Residual Nets
on two image classification datasets. These experiments are
mainly divided into three parts. In the first part, we evaluate
two types of plain CNN models under strict size constraint.
Their parameter layouts are different, and the total number
of parameters is fixed at 4,288 and 66,304 respectively. In the
second part, we evaluate 32-layer Residual Nets with different
parameter layouts when total number of parameters is fixed
at 51,248. Note that the total number of parameters in these
experiments are divided by the constant value (3× 3). In the
third part, we evaluate CNN models with the learned better
parameter layouts under the corresponding circumstances.

4.1 Experiment Setup

CIFAR-10 and CIFAR-100: CIFAR-10 [19] dataset con-
sists of 10 classes of colored images, while the CIFAR-100 [19]
dataset is made up of 100 classes. For each image in both
datasets, it contains 32 × 32 pixels. Generally speaking, the
images of CIFAR-100 are much more variable than them
of CIFAR-10. They are all divided into two parts, i.e., the
training set (50,000 images) and the test set (10,000 images).

Table 3: The architecture of Residual Net in the ex-
periments. ni represents the number of convolution
kernels in the ith residual block unit.

Residual Block Unit Block Type

Conv1
[
3 × 3, n1

]
x 1

Conv2
[
3 × 3, n2

]
x 10

Conv3
[
3 × 3, n3

]
x 10

Conv4
[
3 × 3, n4

]
x 10

Configuration and Training Setting of plain CNN
Models: The configurations of two types of plain CNN
models are shown in Fig. 2. One type of models contains three
convolution layers, and the other kind of models contains
four convolution layers. These models are not employed with
the dropout technique, which just include the convolution
operation, the ReLU activation, the pooling operation and the
regular batch normalization. For each type of CNN models,
their parameter layouts are different, but their number of
parameters are all equivalent to 4,288 or 66,304. In this
way, we can focus on evaluating the relationship between
the allocation of parameters and the discriminative ability of
CNN.

All these CNN models are implemented on Tensorflow
which is an open-source software. The initial learning rate is
set to 0.1, decayed by a factor of 0.1 based on the number of
steps. The batch size is set to 128, and the max training step
is 40,000. They are trained by Stochastic Gradient Descent
on CIFAR-10 and CIFAR-100.
Configuration and Training Setting of Residual Nets:
Residual Nets on two datasets have the same architecture
with only different parameter layouts. The architecture of
Residual Net is shown in Tab. 3. There are 31 convolution
layers in four kinds of residual block units and one pooling
layer. The first residual block unit contains one convolution
layer. As for the second, third and fourth residual block
units, each of them contains ten convolution layers. The
total number of parameters is 51,248.

These Residual Nets are also implemented on Tensorflow.
The initial learning rate is set to 0.1 and reduced to 0.01 when
the training step is up to 60,000. The batch size is set to 128,
and the max training step is 80,000. They are also trained
by Stochastic Gradient on CIFAR-10 and CIFAR-100.

4.2 Evaluations on the Energy Function
with Plain CNN Models

In order to validate the relationship between the allocation of
parameters in the convolution layers and the discriminative
ability of CNN, we conduct experiments with plain CNN
models on CIFAR-10 and CIFAR-100. The configurations
of these CNN models with different allocations of 4,288 and
66,304 parameters in the convolution layers are shown in
Tab. 1 and Tab. 2. Note that if the number of qualified CNN
parameter layouts is over 32, we randomly select 32 samples
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Table 1: Plain CNN models with different parameter layouts under 4,288 parameters. Convs represents the
convolution layers, and Number represents the number of models with different parameter layouts.

Type/Number Different Parameter Layouts

Three Convs/24
(8,8,525),(8,13,320),(8,26,156),(8,41,96),(8,52,74),(11,23,174),(11,37,104),(14,22,179)
(16,16,249),(16,20,196),(16,40,90),(16,53,64),(17,19,206),(18,29,128),(20,28,131),(21,25,148)
(24,31,112),(24,34,100),(32,32,99),(34,46,57),(35,47,54),(36,38,74),(36,44,59),(36,43,58)

Three Convs/32

(8,14,24,159),(8,16,44,78),(8,18,40,86),(8,20,38,88),(8,20,38,88),(8,21,32,107),(8,23,48,62)
(8,25,32,102),(8,27,46,61),(8,33,40,67),(8,38,44,52),(9,27,49,55),(9,29,40,71),(10,23,38,83 )
(10,31,42,63),(11,17,36,96),(11,35,43,55),(12,21,32,104),(12,28,44,64),(13,19,46,68),(13,28,37,77)
(14,29,40,67),(14,33,43,55),(14,33,44,53),(15,22,43,69),(16,22,36,86),(16,32,39,65),(16,34,44,50)
(17,29,36,75),(18,25,44,61),(19,26,37,75),(20,34,44,51),(23,29,37,67)

Table 2: Plain CNN models with different parameter layouts under 66,304 parameters. Convs represents the
convolution layers, and Number represents the number of models with different parameter layouts.

Type/Number Different Parameter Layouts

Three Convs/32

(10,26,2539),(16,101,640),(16,164,388),(17,19,3470),(17,209,300),(18,50,1307),(18,106,607)
(28,35,1864),(28,44,1477),(28,77,832),(28,110,574),(28,140,445),(28,154,402),(34,79,804)
(34,158,385),(36,52,1237),(37,37,1752),(47,109,560),(50,62,1017),(50,97,632),(50,194,291)
(55,59,1066),(56,56,1125),(58,170,331),(64,64,969),(69,157,352),(100,116,469),(104,113,480)
(128,128,387),(128,160,284),(148,178,222),(148,185,208)

Four Convs/32

(10,34,66,965),(11,53,69,899),(12,132,157,280),(12,133,188,211),(15,29,88,719),(15,29,136,455)
(16,159,181,193),(18,81,104,542),(22,25,42,1539),(22,37,87,715),(25,113,121,411),(28,70,153,350)
(28,81,112,490),(36,71,172,299),(38,58,107,540),(38,109,112,445),(42,67,124,444),(46,79,81,693)
(46,111,142,319),(47,61,64,928),(55,59,118,474),(56,81,175,271),(64,76,96,562),(64,88,189,232)
(65,125,128,328),(66,83,92,576),(68,85,145,331),(74,103,148,292),(78,145,148,225),(88,91,93,533)
(98,100,146,285),(122,131,138,231)

Table 4: Residual Nets with different parameter lay-
outs under 51,248 parameters. Each parameter lay-
out generates the energy by the energy function.

Residual Nets Energy

(1,11,42,59) 0
(1,27,34,59) 0
(5,8,17,72) 40.551
(5,10,27,68) 51.536
(7,16,34,63) 78.825
(7,24,25,65) 83.096
(8,22,48,50) 97.341
(13,20,35,61) 112.304
(15,16,37,61) 111.4536
(15,32,38,53) 135.5464
(16,16,32,64) 110.0631
(19,34,41,49) 150.0631
(20,28,42,52) 147.4244

from them. These models with different allocations of pa-
rameters have the corresponding energies computed by Eq. 3.
We plot to scatter diagrams with the energy and the accuracy
of plain CNN models, which are shown in Fig. 3 and Fig. 4,

respectively. In these scatter diagrams, the y-coordination is
the top-1 accuracy on image classification datasets, and the
x-coordination is the energy of the corresponding plain CNN
model.

From Fig. 3 and Fig. 4, it is easy to find a common trend
that the energy of the CNN parameter layout is proportional
to its discriminative ability. The accuracy of CNN will go
higher while its energy becomes bigger. From the blue circle
points in a of Fig. 3, we find that the accuracy of CNN with
the largest energy on CIFAR-10 is 2.5% higher than that with
the smallest energy. In c of Fig. 3, we find that the accuracy
of CNN with the largest energy is almost 3% higher than
that with the smallest energy. These results indicate that the
higher the energy of a specific CNN parameter layout is, the
better its discriminative ability is. Moreover, they also reveal
that the energy function correctly models the relationship
between the allocation of parameters in the convolution layers
and the discriminative ability of CNN. It is worth noting that
the input image size of CIFAR-10/CIFAR-100 is only 32 × 32.
In fact, we have also evaluated the proposed approach on a
high-resolution image dataset, i.e., PascalVOC 2007 [8]. The
experimental results demonstrate consist conclusions with
these obtained from CIFAR-10/CIFAR-100. For example,
the classification accuracy of the plain CNN model with the
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Figure 3: Experimental results on two types of plain
CNN models under 4,288 parameters. The blue cir-
cle points are the results of randomly selected CNN
parameter layouts, and the red circle points are the
results of learned CNN parameter layouts. The re-
sults in the first row are on CIFAR-10, and these in
the second row are on CIFAR-100.
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Figure 4: Experimental results on two types of plain
CNN models under 66,304 parameters. The blue cir-
cle points are the results of randomly selected CNN
parameter layouts, and the red circle points are the
results of learned CNN parameter layouts. The re-
sults in the first row are on CIFAR-10, and these in
the second row are on CIFAR-100.
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Figure 5: Experimental results on Residual Nets
with different parameter layouts. The blue circle
points are the results of different parameter layouts.
(a) demonstrates the results on CIFAR-10, and (b)
demonstrates the results on CIFAR-100.

energy 173.03 is almost higher 2% than that with the energy
95.05 on the PascalVOC 2007 dataset.

We notice that the accuracies of CNN models with approx-
imate energies are not same, which is related to the training
mechanism of CNN. That is, the trained CNN models with
approximate energies are not guaranteed to find the same
local optimal values. However, the differences among the
accuracies are very small, and the trend between the energy
of CNN and its discriminative ability is still obvious. Hence,
the relationship modeled by the energy function is reliable.

4.3 Evaluations on the Energy Function
with Residual Nets

In order to further evaluate the energy function, we conduct
experiments on CIFAR-10 and CIFAR-100 with deeper Resid-
ual Nets. Different allocations of 51,248 parameters in the
convolution layers are shown in the left column of Tab. 4,
and there are 12 different parameter layouts when the total
amount of parameters in convolution layers and the network
structure remain invariant. The energies of Residual Nets
are computed by Eq. 3, shown in the right column in Tab. 4.
To demonstrate the relationship between the energy and the
discriminative ability of Residual Nets more evidently, we
plot scatter diagrams with the energy and the discriminative
ability of Residual Nets like the above section. In Fig. 5, a
scatter diagram depicts the relationship between the energy
and the performance of Residual Nets on CIFAR-10, and b
scatter diagram depicts the relationship on CIFAR-100.

From the scatter diagrams on two datasets in Fig. 5, we
can clearly notice that the energy of Residual Net is propor-
tional to its discriminative ability. The accuracies of upper
right blue circle points are all 3% higher than these of lower
left points on CIFAR-10 and CIFAR-100. It indicates that
the higher the energy of a specific Residual Net parameter
layout is, the better its discriminative ability is. This con-
clusion is consistent with that on the plain CNN models. It
further reveals that the energy function correctly models the
relationship between the allocation of parameters in different
convolution layers and the discriminative ability of CNN.
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Table 5: Plain CNN models with the top six energies
under 4,288 and 66,304 parameters respectively.

Parameter Number Six Learned Best Parameter Layouts

4,288
(35,36,37,43),(33,35,37,47)
(35,37,38,39),(32,36,38,44)
(30,31,38,55),(28,29,32,77)

66,304
(135,136,137,211),(133,135,137,215)
(124,125,128,269),(137,141,142,187)
(123,125,128,270),(128,130,140,222)

4.4 Evaluations on the Energy Function
with the learned CNN parameter
Layouts

In order to validate effectiveness of the learned CNN layouts
by the energy function, we conduct experiments with plain
CNN models on CIFAR-10 and CIFAR-100. As we have
claimed in the previous section, if the number of qualified
CNN parameter layouts is over 32, we randomly select 32
samples from them. In addition, if the number is smaller than
32, the best layout in the previous sections will be directly
employed. Similarly, we conduct experiments on plain CNN
models with four convolution layers under 4,288 parameters
and 66,304 parameters. Through Eq. 4, we obtain CNN
models with the top six energies for avoiding the effect of
randomness in CNN training. These models are shown in
Tab. 5. To be more intuitive to discriminate the learned CNN
parameter layouts, we plot their energies and accuracies with
red circle points to the corresponding scatter diagram in
Fig. 3 and Fig. 4.

From the scatter diagrams in Fig. 3 and Fig. 4, we can
clearly see that the accuracies of CNN models with the top
six energies are located at the upper right corner of the
corresponding scatter diagram. We can clearly notice the
improvements of 4,288 parameters in Fig. 3, as there are
obvious gaps of the energies among the randomly selected pa-
rameter layouts and the learned parameter layouts. Though
the gaps of the energies are relatively small in Fig. 4, one of
the accuracies of learned parameter layouts is higher than the
others. These results show that the energy function can be
used to guide the learning of the better CNN layout, which
further validate that the energy function correctly models the
relationship between the allocation of parameters in different
convolution layers and the discriminative ability of CNN.

5 CONCLUSION

In this work, we attempt to improve the discriminative ability
of CNN under strict size constraint. Instead of enlarging the
breadth or depth, we tentatively optimize the CNN model
by changing the parameter layout in the convolution lay-
ers. To this end, we propose an energy function to model
the relationship between the allocation of parameters in the
convolution layers and the discriminative ability of CNN.
According to the information theory, we build the energy

function, in which the energy is nearly equivalent to the prod-
uct of the information entropies of the convolution layers.
Extensive experiments with plain CNN models and Resid-
ual Nets show that the energy of CNN parameter layout is
proportional to the discriminative ability of CNN. Following
the finding, we propose a novel approach to learn the better
layout, which can guideline the design of the CNN architec-
ture under strict size constraint. Experimental results on
two image classification datasets show that the CNN models
with the learned parameter layouts achieve the better image
classification results.
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